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Introduction: Teacher Selection Process

Applicants to classroom job openings in Spokane Public Schools
during years (2008/09 - 2012/13)
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Introduction: Ratings as Source of Error

54-Pt Screening Rubric:

Certificate and Education

Training

Experience

Classroom Management

Flexibility

Instructional Skills

Interpersonal Skills

Cultural Competency

Preferred Qualifications

(Quality of Recom. Letters)
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Data structure

3474 filled forms

1090 applicants

137 raters

54 job locations (schools)

Applicant status

Internal applicant (2322 forms)

was previously employed as a teacher in the district or
had completed their student teaching in the district

External applicant (1152 forms)

51 applicants external for some and internal for other ratings
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Ratings of a single applicant
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Ratings of two applicants
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Ratings of all applicants
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Ratings of all applicants by Internal/External Status
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Rating distributions

About 3pt higher ratings for internal applicants
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Rating distributions

Higher ratings for internal applicants across all subcomponents

More skewed distribution for internal applicants
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Testing for bias with respect to applicant status

Model controlling for quality measures, accounting for data structure

Yijk = µ+ ωiβ0 + X iβ + Ai + Bj + Sk + ASik + eijk

Applicant internal/external status ωi

Applicant quality measures X i

(e.g. experience, licensure test scores, teacher value added estimates)

Applicant latent quality Ai ∼ N(0, σ2
A)

Rater severity/leniency Bj ∼ N(0, σ2
B)

School severity/leniency Sk ∼ N(0, σ2
S)

Applicant-school matching effect (interaction) ASik ∼ N(0, σ2
AS)
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Rating Bias by Internal/External Status

Model A Model B Model C Model D1 Model D2 Model D
Internal Only Experience Only WESTB VA Math Only VA Read Only Both VA

N = 3474 N = 3473 N = 1411 N = 303 N = 336 N = 267

Intercept 36.03 (0.48)*** 35.57 (0.50)*** 36.23 (0.60)*** 37.34 (1.32)*** 36.96 (1.11)*** 36.74 (1.37)***
Internal 3.08 (0.31)*** 3.16 (0.31)*** 2.84 (0.50)*** 3.97 (1.29)** 4.15 (1.11)*** 4.80 (1.35)***
Experience 0.11 (0.03)
WESTB

Writing 0.11 (0.35)
Reading 0.40 (0.33)
Math 0.09 (0.27)

Value Added
Math 3.90 (2.00) 5.62 (2.46)*
Reading 3.29 (2.27) -3.10 (3.04)

Notes:

Models include random effects of applicant, rater, school and applicant-school interaction.

Experience in years

WESTB - scores on state licensure tests.

Value Added - teacher value added estimates based on changes of student perfomrance on achievement tests.
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Inter-Rater Reliability (Model 1)

Yij = µ+ Ai + Bj + eij

applicant true quality Ai ∼ N(0, σ2
A),

rater leniency Bj ∼ N(0, σ2
B),

error eij ∼ N(0, σ2
e )

Inter-Rater Reliability:

R = cor(Yij ,Yij ′) = ICC =
σ2
A

σ2
Y

=
σ2
A

σ2
A + σ2

B + σ2
e

R ∈ [0, 1], low values mean a lot of measurement error
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Within-School IRR (Model 2)

Yijk = µ+ Ai + Bj + Sk + ASik + eijk

School leniencyl Sk ∼ N(0, σ2
S)

Applicant-school matching effect (interaction) ASik ∼ N(0, σ2
AS)

Within-school IRR:

R = cor(Yijk ,Yij ′k) =
σ2
A + σ2

S + σ2
AS

σ2
A + σ2

B + σ2
S + σ2

AS + σ2
e
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IRR for Internal vs. External Applicants (Model 3)

Q: Does IRR differ in ratings of internal vs. external applicants?

Model 3: Variance components may vary by group

e.g. Rater variance may higher when rating external applicants

Yijk = µ+ ωiβ0+(1− ωi )A0i + ωiA1i

+(1− ωi )B0j + ωiB1j

+(1− ωi )S0k + ωiS1k

+ASik + eijk

ωi = 1 for internal and 0 for external applicants
A0i ∼ N(0, σ2

A0) and A1i ∼ N(0, σ2
A1)

B0j ∼ N(0, σ2
B0) and B1j ∼ N(0, σ2

B1)
S0k ∼ N(0, σ2

S0) and S1k ∼ N(0, σ2
S1)
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IRR for Internal vs. External Applicants (Model 3)

Within-school IRR:

For internal applicant :

R1 = cor(Yijk ,Yij ′k) =
σ2
A1 + σ2

S1 + σ2
AS

σ2
A1 + σ2

B1 + σ2
S1 + σ2

AS + σ2
e

For external applicant:

R0 = cor(Yijk ,Yij ′k) =
σ2
A0 + σ2

S0 + σ2
AS

σ2
A0 + σ2

B0 + σ2
S0 + σ2

AS + σ2
e
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Results: Variance decomposition (Model 3)

High applicant-school variability

Lower applicant variability for external applicants

Higher rater variability for external applicants

Lower inter-rater reliability for external applicants
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IRR for Internal and External Applicants (Model 3)

IRR is estimated simultaneously for both groups within Model 3

Bootstrapped confidence intervals
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IRR for Internal and External Applicants (Model 3)

Significant difference in IRR between Internal and External applicants
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Conclusion for Teacher Hiring Data

Rating is school-specific

Accounting for applicant-school matching in the model is important

Significantly lower ratings of external applicants confirmed

Accounting for previous experience and licensure scores
Accounting for subsequent teacher value added

Singificantly lower inter-rater reliability when rating external
applicants

Similar variance decomposition in stratified data
Our approach allows for testing differences in variance terms
and in IRR by group
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Significantly lower ratings and lower IRR showed for external
applicants to teacher hiring positions

Model-based approach allows to
account for data structure (applicant-school matching etc.)
test for difference in IRR between groups

Method is aaplicable to grant or journal peer-review

Thank you for your attention!
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