The Miracle of Peer Review and Cooperation in Science An Agent-Based Model

Simone Righi ² Karoly Takacs ¹

¹Lendulet RECENS and ERC-N.648693, Hungarian Academy of Sciences

²University of Bologna

Simone Righi Karoly Takacs

Peer review

- Peer review is the fundamental process used by the scientific community to select and to ensure the quality of academic publications
- Scientists regularly contribute high-quality reviews, while only authorship is credited for academic career.
- Why do researchers provide impartial reviews and constructive advice voluntarily?

3

Peer review and Social dilemmas

- We build an Agent-Based Model to study researchers decisions to choose the level of effort in reviews and in manuscript production.
- The puzzle concerned is described as a double social dilemma game.
- Evolutionary approach, where self interested researcher/reviewers decide upon the quality of their contributions. Successful strategies tend to diffuse in the population

-

イロン イボン イヨン イヨン

The model: authors/reviewers

 ${\it N}$ scientists writing single-author papers. Scientists as both reviewers and authors.

- Low / high effort for review (high effort is costly)
- Low / high effort for manuscript = quality (high effort is costly)
- Publication yield a **payoff** that out-weight even the high effort cost
- A high-effort review can properly judge the value of the submission
- Scientists accumulate public and editorial reputations
- Single or double blind review
 - \blacksquare With single blind $\rightarrow \mbox{Reviewers can condition effort on reputation of author}$

Scientist strategies:

- Manuscripts: d / c = low / high effort
- Reviews: D / C / Rep = low / high effort / Depending on reputation of Author.

Simone Righi Karoly Takacs

The model: Journal editor

- A single journal with a single editor, who is not an author or a reviewer in the journal.
- Selects $\mu = 2$ reviewers for each paper chosen uniformly at random (results similar with reviewer selection based on reputation)
- with an upper limit of reviews for each reviewer k = 4.
 Reviewers always accept.
- Information setup:
 - Editor cannot assess quality of reviews and of manuscript.
 - Quality of published papers is revealed, quality of un-published papers remains unknown.

イロト イボト イヨト イヨト 一日

	The Model	
00	00000	000000000000

The model: Reputation

Individual agent editorial reputation:

 $REP_i^E = \#GP - \#Rej - \alpha \cdot \#BP + \gamma \cdot (\#GR - \#BR)$ (1)

- #GP: # of published high quality (good) papers
- #BP # of published low quality (bad) papers.
- #Rej = #BN + #GN: # of rejected papers (good or bad).
- #GR: # of high quality (good) reviews.
- # *GR* # of high quality (bad) reviews.
- α > 1: relative detrimental effect for the journal reputation of accepting a low quality paper (set to 2).
- γ << 1: relative weight of the agent's behaviour as referee compared to the one as author (set to to 0.10)

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Given that high effort is costly authors preference are:

BP > GP > BN > GN

Simone Righi Karoly Takacs

Editorial Policy

- Fixed (does not evolve) \rightarrow Comparative analysis.
- If reviewers agree the editor follow their advice.
- In case of disagreement:
 - AP: Reject the paper
 - 1P: Accept the paper
 - ER: Follow the advice of one of the referees chosen at random probability proportional to the relative Editorial Reputations of the referees;

イロト イヨト イヨト

3

MR: Follow the advice of the Most Reputed referee.

イロン イボン イヨン イヨン

3

Limit to the number of publications

- \blacksquare The number of publications is limited to a fixed proportion $\epsilon < 1$ of submissions.
- If the editorial process produces too many accepted papers:
 - all accepted contributions are ranked according to editorial reputation REP^E_i
 - the first ϵN papers are published.

Simone Righi Karoly Takacs

Timing of the model

Intra step timing:

- All authors produce a paper;
- 2 Editor assigns papers to reviewers;
- 3 Reviewers produce reviews;
- 4 Editor decides about publications;
- 5 Authors reputation is updated;
- 6 Their cross-sectional payoff computed according to: $V_{acc} - e(GP^t + GN^t) - E \cdot \#GR$
- **7** Strategies with higher returns tend to diffuse in the population (replicator dynamics).

Simulations end with convergence on a single strategy or after a (very) long period of time.

Simone Righi Karoly Takacs

Results

Simone Righi Karoly Takacs

The Miracle of Peer Review and Cooperation in Science

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の へ ()

The Model

Baseline: No cooperation - Double blind

- high-quality reviews have no benefits → every reviewer is better off by choosing low effort.
- if reviews are random → 50% chance of publishing (regardless of quality) → no meaning of doing (costly) high quality papers.
- No feedback loop → science ends up as an empty_exercise.

Simone Righi Karoly Takacs

The Model

Baseline: Reputation and Editorial Strategies

- Low effort in review is still dominant
- → a relatively bad reputation does not matter as the chances of publishing a paper become equivalent for good and bad papers over time.

イロト イボト イヨト イヨト

Simone Righi Karoly Takacs

Baseline: No cooperation - Double blind

- Due to lack of cooperation of reviewers.
- with random reviews: # positive reviews ⇒ higher quality.
- Under 1P good papers are more likely to get published.

イロト イボト イヨト イヨト

Simone Righi Karoly Takacs

Baseline: No cooperation - Single blind

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Simone Righi Karoly Takacs

The Model

Effect of Publication rate

- Increasing the journal space allows for more cooperation (in 1P)
- When nearly all papers are published, the true qualities of nearly all papers are revealed.
- Bad papers written with low effort result in a loss of editorial reputation, which weighs largely for scientists' publication chances.
- "PLOS One" style of publication could lead to high quality papers.

イロン イボン イヨン イヨン

Simone Righi Karoly Takacs

Introducing reputation bias

Editors may have bias in favour of authors with high REP_i^E and against authors with low one.

We assume that:

- authors with an editorial reputation lower than the median has a chance of desk rejection that is in negative linear association with their reputation.
- authors with an editorial reputation higher than the median has a chance of desk acceptance that increases linearly with their reputation
- concentrates peer review in the middle range, where no clear reputational judgment can be expected from the editor.

イロト 不得下 イヨト イヨト 二日

Introducing reputation bias: still no cooperation

イロト イボト イヨト イヨト

Simone Righi Karoly Takacs

The Miracle of Peer Review and Cooperation in Science

shortinst

Journal Impact Factor

- Publishing in a reputed journal produces a payoff that depends also on the quality of past published papers (a public good).
- All agents who publish receive a bonus (added to their payoff):

$$JIF_{t} = \kappa \cdot \frac{\sum_{\tau=1}^{t} \sum_{i=1}^{N} GP_{i}^{\tau}}{\sum_{\tau=1}^{t} \sum_{i=1}^{N} GP_{i}^{\tau} + \sum_{\tau=1}^{t} \sum_{i=1}^{N} BP_{i}^{\tau}} \qquad (2)$$

- κ > 1 defines the "technology of public good": how much reward JIF gives to published authors.
- \blacksquare Considering the Journal Impact Factor and $\kappa>1,\rightarrow$ linear Public Good Game

イロト イボト イヨト イヨト 一日

The Model

JIF and cooperation

Simone Righi Karoly Takacs

The Model	Results
	00000000000

Conclusions

- Why scientists devote considerable time and effort for writing reviews that decreases their time spent on their own research?
- baseline equilibrium: low effort in writing papers as well as in writing reviews spread → scientific practice becomes an empty exercise.
- More relaxed editorial policies → better performances.
- Pure Reputational bias ensure some quality of manuscripts... but low quality still dominant.
- Journal impact factor, when enhances the individual payoff (e.g. easier to get a work, a promotion) ensures high manuscript quality.
- Current work (with Elena Vallino, Torino) extends our simple model towards studying multiple journals that compete for success with each other.

Simone Righi Karoly Takacs

	The Model 000000	Results ○○○○○○○○○
Thanks		

- Righi S., Takacs K. (2017), The Miracle of Peer Review and Development in Science: An Agent Based Model, *Scientometrics* (10.1007/s11192-017-2244-y)
- Righi S., Takacs K., Vallino E., Journal competition and the miracle of peer review, in development.

```
Personal webpages:
Simone Righi:
http://digilander.libero.it//righi_simone/
Karoly Takacs:
http://web.uni-corvinus.hu/~tkaroly/
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Simone Righi Karoly Takacs