Seasonal effects in peer review processes?

Marcel Ausloos Olgica Nedić Aleksandar Dekanski

Two questions

- Are seasonal effects found in paper submission flow to peer review journals?
- Are subsequent rejections depending on the submission month?

A case study comparing a specialized to a general readership journal.

Shalvi et al. (2010)

- *Psychological Science* (PS)
- Personality and Social Psychology Bulletin (PSPB)
- high number of submissions to PS during the summer months
- winter drop in the submission to PSPB
- attribute behavioral differences to editorial policy, - rather than to authors or reviewers.

Alikhan et al. (2011)

- 20 journals pertaining to dermatology
- May was the least popular month
- July was the most popular month
- χ2 ≈ 36.27

− for 11 degrees of freedom $\chi^2(11) \approx 4.57$.

Schreiber (2012)

- Europhysics Letters (EPL), from 1999 to 2010
- visible maximum for submissions in July
- marked dip in February
- claims no statistical effect !
- but $\chi 2$ goes from ≈ 5.57 to ≈ 13.55

Schreiber (2012)

- Europhysics Letters (EPL), from 1999 to 2010
- <u>acceptance</u> rate : ranging between 45% and 55%,
- marked minimum in January
- maximum in July
- visible statistical outliers !
- but $\chi 2$ goes from ≈ 0.86 to ≈ 2.58

others

- J. Hartley, Write when you can and submit when you are ready! (2011).
- L. Bornmann and H.-D. Daniel, Seasonal bias in editorial decisions? A study using data from chemistry (2011). *(no effect)*
- M. Antonoyiannakis, Acceptance rates in Physical Review Letters: no seasonal bias (2014).

• ..

- Journal of the Serbian Chemical Society (JSCS)
 - 600 submitted papers
 - 2 years
- Entropy
 - 2500 submitted papers
 - 3 years

Methodology

- Absolute values
- Time series or (and) Cumulated series
- Relative values
 - normalization !!!
- Time series or (and) Cumulated series

definitions

- $p_i^{(s)} = N_i^{(s)} / \Sigma_i N_i^{(s)}$
- $p_i^{(a)} = N_i^{(a)} / \Sigma_i N_i^{(a)}$
- $q_i^{(a)} = N_i^{(a)} / \Sigma_i N_i^{(s)}$
- $r_i^{(a)} = p_i^{(a)} / p_i^{(s)}$
- $R_i^{(a)} = N_i^{(a)} / \Sigma_i N_i^{(s)}$
- $Q_i^{(a)} = N_i^{(a)} / N_i^{(s)}$
- ... idem for

reviewer rejected, desk rejected, withdrawn papers

- $p_i^{(a)} p_i^{(r)} = ?$
- $p_i^{(a)} + p_i^{(r)} = /= p_i^{(s)}$ but
- because the only truth is : • $N_i^{(a)} + N_i^{(rr)} + N_i^{(dr)} + N_i^{(w)} = N_i^{(s)}$
- $Q_i^{(a)} + Q_i^{(rr)} + Q_i^{(dr)} + Q_i^{(w)} = Q_i^{(s)}$

watch out

JSCS statistics

JSCS	N submitted (N _s)		N accepted (N _a)			
Year	2013	2014	2013	2014		
Min.	17	15	8	4		
Max.	35	30	20	17		
Total	322	274	146	116		
Mean (µ)	26.833	22.833	12.167	9.667		
Std. Dev. (o)	5.8595	5.5732	4.3450	4.0076		
Skewness	-0.4300	-0.1377	0.6669	0.2111		
Kurtosis	-1.0609	-1.6261	-1.1253	-0.9704		
μ-2σ;μ+2σ	15.114: 38.552	11.687; 33.980	3.477.: 20.857	1.652:17.682		
χ^2	14.075	14.964	17.068	18.276		
χ ² (11} (0.95 %)	4.5748					

Entropy statistics

Entropy	N submitted (N _s)			N accepted (N _a)					
Year	2014	2015	2016	2014	2015	2016			
Min.	36	72	64	16	27	30			
Max.	77	96	94	44	56	51			
Total	604	961	1008	336	467	447			
Mean (µ)	50.33	80.08	84.00	28.00	38.92	37.25			
Std. Dev. (o)	11.618	8.2623	8.4423	7.722	7.242	6.312			
Skewness	1.2197	0.5534	-0.9402	0.2190	0.8248	0.7696			
Kurtosis	0.5738	-1.0378	0.6370	-0.1618	0.9630	-0.1801			
μ-2 σ	27.098	63.559	67.115	12.555	24.433	24.626			
μ+2 σ	73.569	96.608	100.88	43.445	53.401	49.874			
χ^2	29.4969	9.3767	9.3333	23.4286	14.8243	11.7651			
χ^2 (11}(0.95 %)		4.5748							

probability of submission

?!

/30

$$p_a - p_r = (N_a - N_r)/N_s$$
 JSCS

$p_a - p_r = (N_a - N_r)/N_s$ Entropy

conclusions

- S: number or rate depends on journal
- A : number or rate depends on journal
- A/S : number or rate depends on journal
- why ? indeed, specialized vs. general

... thus, make a study before submitting

Further work ?

- Still much to do
- Exogenous causes ?
 - Sunspots ?
 - Moon phases ?
- Quality effect ?
 - number of citations:
 - but is it quality or popularity?
 - beware of sleeping beauties

Please applaude now

thanks

 $N_s / \Sigma_i N_s^{(i)}$ i = [1; 12]

