With a little help from your friends:
The impact of social networks on publication success

Frank Schweitzer

In collaboration with: G. Casiraghi, V. Nanumyan, E. Sarigöl, I. Scholtes
Main Research Areas

Economic Networks & Social Organizations

- e.g. ownership networks, R&D networks, financial networks, ...
- e.g. online communities, OSS projects, animal societies, ...

Methodological Approach: Data Driven Modeling

- economic databases: ORBIS, Bloomberg, patent databases
- online data: user interaction, communication records, blogs
Collaboration of scientists

- **agent:** individual scientist, **network:** co-authorship network

- **data:**
 - APS (1895-2004): 226,724 authors, 1,567,084 collaborations
 - MSAS (1996-2008): 160,891 authors, 5,324,330 collaborations
Science = Publications?

Follow-up mistakes:

- if you believe in:
 Science \equiv Publications
 you also believe in:
 Success \equiv Citations

- common misunderstanding:
 IF \equiv importance
 - IF = size of community
 - 1st order strategy to increase IF: publish less

Get your paper into the top 10% in your field
(measured by citations)
Multi-layer network: Scientific collaborations

3 different projections

1. Collaboration network
 - relations between authors
 - undirected, evolves in time

2. Citation network
 - relation between papers
 - directed, temporal order (!)

3. Author-author citations
 - do we cite papers or authors?

Checkout our multiplex network visualization tool!
multinets.io
Does your social position really matter?

- Quality matters ... but
 - paper should become known
 - authors have to become known

Experiment

Can social position at year t predict success of a paper at year $t + 5$?
Dynamic collaboration network

\(\alpha \)
Ralph Alpher

Letters to the Editor

\(\beta \)
Hans Bethe

\(\gamma \)
George Gamow
Network Position and Success

Hypothesis: authors’ importance in collaboration network is indicative for citation success
How to quantify network position?

- We apply 9 different metrics (all time resolved)
 1. centralization: how many agents can be removed
 2. weighted k-core decomposition: vulnerability against cascades
 3. algebraic connectivity: identify potential break points

- Degree centrality
- Closeness centrality
- Eigenvector centrality
- Betweenness centrality
Centrality and citation success

Hypothesis: authors’ importance in collaboration network is indicative for citation success

YES, it is!

Prediction machine for the top 10% papers

Random Forest Classifier

network-based measures capturing importance of authors
max/min eigenvector, betweenness, degree, and k-core centrality

coauthorship network [t-2y, t]

among 10% most cited works at t+5y?

Published in year t

Training set

Letters to the Editor

The Origin of Chemical Elements
R. A. Schmitt

Applics Laboratory, The Johns Hopkins University,
Baltimore, Maryland

H. Briner

Cornell University, Ithaca, New York

G. C. Garrett

The George Washington University, Washington, D.C.

February 14, 1944
Social position correlates with future success

<table>
<thead>
<tr>
<th></th>
<th>Nr. Publications</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>58129</td>
<td>53.9%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Computer Science</td>
<td>125061</td>
<td>55.8%</td>
<td>21.2%</td>
</tr>
<tr>
<td>Biology</td>
<td>59871</td>
<td>60.6%</td>
<td>16.6%</td>
</tr>
<tr>
<td>Physics</td>
<td>52008</td>
<td>49.0%</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

- **Bad precision?** *Not really* ...
 - *precision*: (correctly classified)/(classified)
 - A random guess leads to a precision of 10% ⇒ 5 - 6 times better

- **Bad recall?** *Thank god!*
 - *recall*: (classified)/(existing)
 - (CS) For only 2,580 out of 12,000 papers the social position of the authors already determines their success
 - 1,440 are correctly identified
 - There is room for nobodys to become champions
Unknown Champions?

How to use these insights? ⇒ Better understanding of “success”

1. Reveal impact of social network on success
 - Intuition is right! But now, it can be quantified.
 - *Surprise:* Role of the social network
Unknown Champions?

How to use these insights? ⇒ Better understanding of “success”

1 Reveal impact of social network on success
 - Intuition is right! But now, it can be quantified.
 - **Surprise:** Role of the social network

2 Discover success without social network
 - Focus on genuine contribution
 - **Surprise:** Occurrence of success

Two different levels:

- **Individual scientists**
- **Institutions**
 - aggregate over collaborations
Citations increase with collaborations

- **dots**: universities, research institutions
- almost linear relationship between collaborations and citations (log-log)
- **1st order strategy**: increase collaboration

Data: APS 2005-2010, co-authors, citations aggregated to institutional level
Citations increase with collaborations

And the winner is ...
... the usual suspect
... some exceptions (APS)

Highest ranked institutions:
University of Tokyo
California Institute of Technology
Istituto Nazionale di Fisica Nucleare
Massachusetts Institute of Technology
Max Planck Gesellschaft
Stanford University
University of California Berkeley
Atomic Energy Commission
Fermi National Accelerator Laboratory
University of Maryland

Is this a good measure of success?

Data: APS 2005-2010, co-authors, citations aggregated to institutional level
Citations increase with collaborations

Hidden Champions:
above the diagonal

Highest ranked institutions:
University of Tokyo
Rochester Institute of Technology
Princeton University
Delft University of Technology
ETH Zurich
Harvard University
National Institute of Standards and Technology
University of Washington
University of Innsbruck
National Aeronautics and Space Administration

Data: APS 2005-2010, co-authors, citations aggregated to institutional level
Do social relations pay off in science?

- **Data set:** PLOS ONE (2007-2014) (1 out of 7 PLOS journals)
 - 120,000 publications (i.e. 15,000 p/a), current charge: 1.500 USD
 - 350,000 authors, 4,238 (out of 7,836) editors/authors
Do social relations pay off in science?

- **Data set:** PLOS ONE (2007-2014) (1 out of 7 PLOS journals)
 - 120,000 publications (i.e. 15,000 p/a), current charge: 1,500 USD
 - 350,000 authors, 4,238 (out of 7,836) editors/authors

- **Analysis:**
 - measure distance of editors-authors on co-authorship network ($d_e = 1$)
 - calculate handling time (submission-accept)

Payoff:

Previous co-authors gain **19 days**

Central “repeat customers” gain **38 days**
The Strategic Perspective
A small elite

Example: PACS 89 community (2000-2011)
- total size of the community: \(N = 4100 \)
- top 10% most cited authors: 230, top 5%: 120

biggest problem: top range authors review/cite top range authors

PACS: Physics and Astronomy Classification Scheme
PACS 89: Other areas of applied and interdisciplinary physics
No ‘rich club’ effect

- distinctive groups, same reputation \(\Rightarrow\) strong competition
Better than the rest?

- **Observations**
 - very small elite, clustered, sparsely connected
 - comparable reputation (# citations)

- **How to improve own strategic position?**
 1. *increase own* reputation by other means ⇒ *popularity*
 - public appearance, mass media, social media, ...
 2. *decrease others* reputation ⇒ *malicious behavior*
 - anonymous reviews, discredit, omission

⇒ systemic feedback on strategic behavior
Strategic citing behavior

- known: $\hat{k}_{i\rightarrow j}$: number of citations
- How many citations top author A_i deserves from top author A_j?
 - depends on topical overlap
 - proxied by community similarity
 - results in asymmetric weight $w_{i\rightarrow j}$
Strategic citing behavior

- known: $\hat{k}_{i\rightarrow j}$: number of citations
- How many citations top author A_i deserves from top author A_j?
 - depends on topical overlap
 - proxied by community similarity
 - results in asymmetric weight $w_{i\rightarrow j}$

Friend-or-Foe index (FoF)
- $w_{i\rightarrow j} \Rightarrow$ network ensemble $\Rightarrow P(k_{i\rightarrow j})$
- $P(k_{i\rightarrow j}) \Rightarrow$ CDF
- $\hat{p}_{i\rightarrow j}$: percentile, in which $\hat{k}_{i\rightarrow j}$ falls
FoF index: Top 100/ PACS 89

- Bands of asymmetric relations
- Cooperating clusters
- Top authors undercite everyone
- Top authors are overcited by everyone
FoF index: Top 100/ PACS 89

- Bands of asymmetric relations
- Cooperating clusters
- Top authors undercite everyone
- Top authors are overcited by everyone
FoF index: Individual researchers/ PACS 89

- **RC**: ranked 10th
- **NY**: ranked 90th
- Empirical CDF of FoF values
 - broad: large interquantile range
 - polarizing
 - narrow: small interquantile range
 - rather neutral
- Different attitudes: 10. vs 90.
 - negative bias
Friends and Foes: PACS 89

- The larger the interquantile range, the more polarizing

- Cited author:
 - The better the rank, the stronger the FoF
 - Reason: strong competition

- Citing author:
 - The better the rank, the stronger the FoF
 - But less pronounced

- Good news: from rank 20 on, reasonable behavior
Conclusions

Role of social network in having success

1. **Top 10% paper:** partly predictable by social position
2. cannot make a bad paper a good one, but a good one a top one
3. **Unknown champions:** success without network

Conclusions

Role of social network in having success

1. Top 10% paper: partly predictable by social position
2. cannot make a bad paper a good one, but a good one a top one
3. Unknown champions: success without network

Quantifying strategic interaction

1. Friend-or-Foe index: the better ranked, the more strategic citations
2. competition: malicious strategies invade communities