Opening the black box of peer review

Tom Jefferson
jefferson.tom@gmail.com
Content

• Origins
• Evidence of effects
• Gaps in the evidence base
• What is quality?
• Reporting bias & the publications industry
• Way forward and RIAT
• Alternatives to peer review
Towards an interdisciplinary approach to peer review
Wonderscreen®
(Lo screening meraviglioso)

By
Thomas Jefferson Jr MD
Founder, President and CEO
PharmaTom Inc

Towards an interdisciplinary approach to peer review
Wonderscreen®

- Universal screening device
- Distinguishes the good from the bad
- Franchising network
- Global market (60,000 + sites plus 1,000 more per year)

Towards an interdisciplinary approach to peer review
Wonderscreen®

Extensively trialled!!!!

9 RCTs (n=2,540) testing whether users could guess which packet the instruction were in

2 before & after studies on checklist for instructions (n=568)
Wonderscreen®

Extensively trialled!!!!

• 2 RCTs on readability of instructions
• 1 RCT on attitudes to Wonderscreen® by male residents of Goa aged 65 and above
Wonderscreen®

Extensively trialled!!!!

• 2 RCTs on dissemination of instructions by electronic vs paper means
• 1 comparative study on validity of Wonderscreen®

Towards an interdisciplinary approach to peer review
An Invitation

Wonderscreen®

My company would be honoured if you would join us and become one of the franchising sites
Peer review should identify studies which are:

- Important
- Useful
- Relevant
- Methodologically sound
- Ethical
- Complete
- Accurate
<table>
<thead>
<tr>
<th>Outcome / definition</th>
<th>Ideal indicator</th>
<th>Surrogate indicators</th>
</tr>
</thead>
</table>
| **Important** | - Changes in health status
 - Changes in healthcare delivery | - Citation rates
 - Media coverage
 - Correspondence |
| Study findings have a major impact on health or healthcare | | |
| **Useful** | - Contributes significantly within a systematic review of the topic
 - Narrows CIs around estimates of effect | - Contributes to non-systematic reviews or guidelines
 - Citation rates
 - Correspondence |
| Study contributes significantly to the scientific debate or knowledge on a subject | | |
| **Relevant** | - Topic is relevant and consistent with the aims and readership of the journal confirmed by survey | - Citation rates
 - Correspondence
 - Internet hit rates |
| Topic is relevant to the journal’s aims and readers | | |
| **Methodologically sound** | - Study findings are replicated several times across different settings | - Closeness of fit between methods and 'evidence-based' methodological checklist
 - Correspondence |
<p>| Methods used are able to answer the study question | | |</p>
<table>
<thead>
<tr>
<th>Outcome / definition</th>
<th>Ideal indicator</th>
<th>Surrogate indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethically sound</td>
<td>- No divergence between reality and the report.</td>
<td>- Study received ethical clearance</td>
</tr>
<tr>
<td>Unnecessary harm to humans or animals has been avoided</td>
<td>- Rights of humans and animals safeguarded</td>
<td>- No complaints from participants</td>
</tr>
<tr>
<td>Study has been carried out and reported honestly</td>
<td>- Privacy and informed consent maintained throughout</td>
<td>- No duplicate publication</td>
</tr>
<tr>
<td></td>
<td>- Raw data match presented data</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>- There is no selective presentation of data</td>
<td>- The text is complete</td>
</tr>
<tr>
<td>All relevant information is presented</td>
<td>- All relevant references are cited</td>
<td>- The publication is complete (ie not salami-sliced)</td>
</tr>
<tr>
<td>Accurate</td>
<td>- Measurements truly reflect magnitude of findings</td>
<td>- The figures add up</td>
</tr>
<tr>
<td>Presented information is a true reflection of what went on</td>
<td>- Raw data match presented data</td>
<td>- Corrections</td>
</tr>
<tr>
<td></td>
<td>- References are accurate</td>
<td></td>
</tr>
</tbody>
</table>
Reboxetine vs placebo and/or SSRIs for depression

<table>
<thead>
<tr>
<th>Trial</th>
<th>Reboxetine (n/N)</th>
<th>Placebo (n/N)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients with adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>84/126</td>
<td>78/128</td>
<td></td>
</tr>
<tr>
<td>091</td>
<td>24/28</td>
<td>13/28</td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>71/112</td>
<td>58/112</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>239/264</td>
<td>208/254</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>225/258</td>
<td>201/252</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>138/150</td>
<td>117/150</td>
<td></td>
</tr>
<tr>
<td>045</td>
<td>68/89</td>
<td>52/87</td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>98/106</td>
<td>77/104</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>947/1133</td>
<td>804/1115</td>
<td></td>
</tr>
</tbody>
</table>

Total heterogeneity: $I^2=44.0\%, P=0.085$; total effect: $P=0.001$

	Withdrawal owing to adverse events		
014	14/126	15/128	
091	1/28	1/28	
015	11/112	7/112	
046	26/264	9/254	
047	20/258	10/252	
050	27/150	12/150	
045	15/89	7/87	
049	23/106	3/104	
Total	137/1133	64/1115	

Total heterogeneity: $I^2=38.4\%, P=0.124$; total effect: $P=0.001$

Towards an interdisciplinary approach to peer review

Edying et al BMJ 2010
Abandoned trials - Distortion
Drugs for which negative outcomes (adverse events or lack of efficacy) were discovered using company data

- Reboxetine (Edronax; Pharmacia-Pfizer)
- Oseltamivir (Tamiflu; Roche)
- Gabapentin (Neurontin; Parke-Davis-Pfizer)
- Rofecoxib (Vioxx; Merck)
- Rosiglitazone (Avandia; GSK)
- Oseltamivir (Tamiflu, Roche)

Source: Doshi, Del Mar & Jefferson PLOSmed 2012
Information that was missed without access to internal company files on Tamiflu

- Total number of trials done on topic
- Adverse events not reported in articles
- Adverse events classified as “complications”
- Trials published 10 years after completion
- Trial details vital to interpretation
- Authorship of reports

Source: Doshi et al PloS Med 2012
Towards an interdisciplinary approach to peer review
EMA's release of regulatory data: trust but verify

Towards an interdisciplinary approach to peer review
Paper needed to print oseltamivir study WP16263 (courtesy of Peter Doshi)
Towards an interdisciplinary approach to peer review
Selection

RIATAR (Audit record: shows what’s in and what’s out and why)
Report analyses per protocol
Identify analyses which are NOT per protocol
All available as web appendices

Restored publication
Salient aspects of the current editorial peer review system

- quality assurance through experts’ opinions
- managing competition for publication space
- the scholarly task of improving scientific knowledge

Towards an interdisciplinary approach to peer review
Are we being honest about the aims of journal peer review?

• Protect journal’s reputation (*it ain’t me guv*)
• Make journal more interesting
• Reduce work of in-house editors
• Provide acceptability for commercially-funded studies
• Tool for academic promotion system

Towards an interdisciplinary approach to peer review
What are the alternatives?

• No change
• Free for all (electronic, paper)
• Pre-publication/post-publication
• Closed (autarchic) p.r.
• Data extraction
• CSR linked commentaries - abandoning competition for space
Editorial peer review for improving the quality of reports of biomedical studies: a Cochrane review
Tom Jefferson on behalf of the PIRATES
(Liz Wager, Frank Davidoff, Phil Alderson)
Background

• Peer review is seen as a key process in guaranteeing quality of published material

• “Every scientist has a story to tell about the inequities of the peer review system” – Drummond Rennie

• Do the benefits outweigh the harms?
Inclusion - types of studies

Reports of original research submitted to biomedical journals:

- randomised/quasi-randomised controlled trials
- interrupted time series
- before and after studies
- other observational studies where there was some attempt to control for confounding

Excluded: surveys comparing editorial practice or editorial outcomes with characteristics of journals or reviewers
Inclusion - types of intervention

• Different ways of
 – Screening submissions
 – Assigning submissions
 – Masking submissions
 – Eliciting internal opinions (i.e. within publisher)
 – Eliciting external opinions
 – Making decisions on whether to publish
 – Feeding back to authors and making revisions

• Combinations of the above

• Anything else we hadn’t thought of in the list that might be called peer review
Results

• 19 included studies
 – 11 randomised
 – 8 non-randomised
Discussion

• Small amount of research compared to the use and power of ed. peer review
• Concentration of research on processes, both for questions and the outcomes measured
• Limitation to biomedical publications
Conclusions

- Very limited evidence that peer review improves quality of publications
- No evidence that blinding/masking has a major effect, and it is difficult to achieve
- Checklists may improve consistency
Difficulties encountered

- Definition of objectives of peer review
- Definition of processes
- Definition of outcomes - acceptable degree of surrogacy
(1) P.r. should identify submissions that are:

<table>
<thead>
<tr>
<th>Outcome / definition</th>
<th>Ideal indicator</th>
<th>Surrogate indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td>- Changes in health status</td>
<td>- Citation rates</td>
</tr>
<tr>
<td>Study findings have a major</td>
<td>- Changes in healthcare delivery</td>
<td>- Media coverage</td>
</tr>
<tr>
<td>impact on health or healthcare</td>
<td></td>
<td>- Correspondence</td>
</tr>
<tr>
<td>Useful</td>
<td>- Contributes significantly within a systematic review of the topic</td>
<td>- Contributes to non-systematic reviews or guidelines</td>
</tr>
<tr>
<td>Study contributes significantly</td>
<td>- Narrows CIs around estimates of effect</td>
<td>- Citation rates</td>
</tr>
<tr>
<td>to the scientific debate or</td>
<td></td>
<td>- Correspondence</td>
</tr>
<tr>
<td>knowledge on a subject</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant</td>
<td>- Topic is relevant and consistent with the aims and readership of the journal</td>
<td>- Citation rates</td>
</tr>
<tr>
<td>Topic is relevant to the</td>
<td>confirmed by survey</td>
<td>- Correspondence</td>
</tr>
<tr>
<td>journal's aims and readers</td>
<td></td>
<td>- Internet hit rates</td>
</tr>
<tr>
<td>Methodologically sound</td>
<td>- Study findings are replicated several times across different settings</td>
<td>- Closeness of fit between methods and 'evidence-based'</td>
</tr>
<tr>
<td>Methods used are able to</td>
<td></td>
<td>methodological checklist</td>
</tr>
<tr>
<td>answer the study question</td>
<td></td>
<td>- Correspondence</td>
</tr>
</tbody>
</table>
P.r. should identify submissions that are:

<table>
<thead>
<tr>
<th>Outcome / definition</th>
<th>Ideal indicator</th>
<th>Surrogate indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethically sound</td>
<td>- No divergence between reality and the report.</td>
<td>- Study received ethical clearance</td>
</tr>
<tr>
<td>Unnecessary harm to humans or animals has</td>
<td>- Rights of humans and animals safeguarded</td>
<td>- No complaints from participants</td>
</tr>
<tr>
<td>been avoided</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study has been carried out and reported</td>
<td>- Privacy and informed consent maintained throughout</td>
<td>- No duplicate publication</td>
</tr>
<tr>
<td>honestly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Raw data match presented data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Number preference check is negative</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>- There is no selective presentation of data</td>
<td>- The text is complete</td>
</tr>
<tr>
<td>All relevant information is presented</td>
<td>- All relevant references are cited</td>
<td>- The publication is complete (ie not salami-sliced)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accurate</td>
<td>- Measurements truly reflect magnitude of findings</td>
<td>- The figures add up</td>
</tr>
<tr>
<td>Presented information is a true reflection of what went on</td>
<td>- Raw data match presented data</td>
<td>- Corrections</td>
</tr>
<tr>
<td></td>
<td>- References are accurate</td>
<td></td>
</tr>
</tbody>
</table>
Outcomes and quality measures

Importance of findings

• Ideal indicator: *change in health status*
• 1st rank surrogate: *citation rate*
• 2nd rank surrogate: *correspondence*
• 3rd rank surrogate: *reviewer agreement*
• Process centred: *use of checklist*
The reality

<table>
<thead>
<tr>
<th>Masking</th>
<th>9 studies</th>
<th>Time taken; Constructiveness; Courtesy; Acceptance rates; Authors’ views; Use of supporting evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions with reviewers</td>
<td>Callaham; Strayhorn; Neuhauser</td>
<td>Acceptance rates; Congruence with editors’ views; Timeliness</td>
</tr>
<tr>
<td>Checklists</td>
<td>Gardner; Jefferson</td>
<td>Study design; stats presentation; Quality of econ submissions (no effect)</td>
</tr>
<tr>
<td>Internet (open) review</td>
<td>Bingham</td>
<td>Timeliness; Etiquette; Use of supporting references</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Bias</td>
<td>Ernst</td>
<td>Bias against unconventional treatments</td>
</tr>
<tr>
<td>Before/after (accepted papers)</td>
<td>Goodman; Perie</td>
<td>Readability; Readers’ views; Experts’ views</td>
</tr>
<tr>
<td>Studies in P-R cf non P-R jnls</td>
<td>Elvik</td>
<td>Retrospective, non-randomised cohort</td>
</tr>
</tbody>
</table>
Review showed that:

- Most studies have been process-centred and used surrogate outcome measures.
- One study with broader aims had serious methodological weaknesses.
- Two studies showing effects of peer review considered only accepted papers.
- Most aspects of journal peer review remain untested and unproven.
Conclusions

• Unless we define the aims of peer review we cannot measure its quality
• Studies have largely been process-centred
• Current practice is largely empirical
• Journal peer review is only one part of the scientific process
• It may not be the best model for all types of biomed publishing
Are we being honest about the aims of journal peer review?

- Protect journal’s reputation (*it ain’t me guv*)
- Make journal more interesting
- Reduce work of in-house editors
- Provide acceptability for commercially-funded studies
- Tool for academic promotion system
What are the alternatives?

• No change
• Free for all (electronic, paper)
• Pre-publication/post-publication
• Closed (autarchic) p.r.
• Data extraction
Overall effect of peer review

- Elvik 1998
 - Comparing studies in peer reviewed journals with similar studies in other journals
 - No clear differences in study validity
- Goodman 1994
 - Before and after study at Annals of Internal Medicine on 111 manuscripts
 - Improved quality of reporting, but reliability of scoring low
- Pierie 1996
 - Assessment by journal readers of quality of submitted and accepted versions of 50 articles
 - Improved overall quality
Effect of blinding/masking in peer review

- 9 studies
 - No convincing evidence that blinding/masking improves the quality of the publication
 - Evidence that reviewers produce more courteous reports when their name is to be revealed
 - Blinding is probably difficult to achieve
Usefulness of checklists

• Gardner 1990
 – Statistical refereeing with the use of a checklist improved statistical quality

• Jefferson 1998
 – Publication of BMJ guidelines for economic submissions
 – No evidence of improved quality of economic submissions
Presumed aims of peer review

- Select ‘good’ research
- Improve:
 - usefulness
 - comprehensibility
 - accuracy
 - relevance

for healthcare workers
- Reject research / reports that are:
 - misleading
 - unsound
 - weak/ trivial
 - fraudulent
 - redundant
Journal peer review is part of the scientific process

- Funding review importance/ methods
- Protocol review methods
- Ethical review ethical soundness
- Informal review relevance / context
- **Journal review** quality of reporting accuracy, complet., copy-editing